1. Home
  2. Article Catalog
  3. How to integrate Financial Data from Refinitiv Data Platform to Excel with Xlwings - Part 2

Article

How to integrate Financial Data from Refinitiv Data Platform to Excel with Xlwings - Part 2

Wasin Waeosri
Developer Advocate Developer Advocate
Felix Zumstein
Developer Advocate Developer Advocate

Overview

This article is the second part of the series that demonstrate how to export financial data and report from Python/Jupyter application to Excel report file using xlwings CE and xlwings Pro libraries. The demo applications use content from Refinitiv Data Platform (RDP) as an example dataset. If you are not familiar with xlwings library or xlwings CE, please see more detail on first part article.

This second article is focusing on xlwings Reports, Embedded Code, and PDF features.

Note: All figures and reports demonstrate Time-Series 90 days data queried on 24th November 2020.

Introduction to xlwings

xlwings is a Python library that makes it easy to call Python from Excel and vice versa on Windows and macOS. The library lets you automate Excel from Python source code to produce reports or to interact with Jupyter notebook applications. It also allows you to replace VBA macros with Python Code or write UDFs (user defined functions - Windows only).

  • The xlwings CE is a free and open-source library (BSD-licensed) which provides basic functionalities to lets developers integrate Python with Excel.
  • The xlwings PRO provides more advanced features such as reports, embedded Python code in Excel, one-click installers for easy deployment, video training, dedicated support, and much more.

The Jupyter Notebook and Python console applications are based on xlwings version 0.21.3.

Introduction to Refinitiv Data Platform (RDP) Libraries

Refinitiv provides a wide range of contents and data which require multiple technologies, delivery mechanisms, data formats, and the multiple APIs to access each content. The RDP Libraries are a suite of ease-of-use interfaces providing unified access to streaming and non-streaming data services offered within the Refinitiv Data Platform (RDP). The Libraries simplified how to access data to various delivery modes such as Request Response, Streaming, Bulk File, and Queues via a single library.

For more deep detail regarding the RDP Libraries, please refer to the following articles and tutorials:

Disclaimer

As this notebook is based on alpha versions 1.0.0.a5 and 1.0.0.a7 of the Python library, the method signatures, data formats, etc. are subject to change.

Introduction to xlwings Reports

The xlwings Reports is part of xlwings PRO and a solution for template-based Excel and PDF reporting. The xlwings Reports let business users design and maintain their reports directly within Excel without being dependent on a dedicated reporting team or Python programmer.

The main features of the xlwings Reports are the following:

  • Separation of code and design: Users without coding skills can change the template on their own without having to touch the Python code.
  • Template variables: Python variables (between curly braces) can be directly used in cells, e.g. {{ title }}. They act as placeholders that will be replaced by the actual values.
  • Frames for dynamic tables: Frames are vertical containers that dynamically align and style tables that have a variable number of rows.

You can get a free trial for xlwings PRO here, then follow the instructions on How to activate xlwings PRO page.

Intel vs AMD Report Template Preparation

We will use Intel and AMD stock price comparison as example data for this xlwings Reports file.

Firstly, we create the Excel template as part2_rdp_report_template.xlsx file. The report template contains two sheets, one for daily pricing comparison and one for volume comparison.

The daily pricing sheet template example is following:

Templates Variables

You will noticed the double curly bracket placeholders like {{ intel_price_title}}{{ intel_price_df}}{{ amd_graph }}, etc in the Excel template file. They are called templates variable. xlwings Reports will replace those template variables with data (Pandas DataFrame, text, Matplotlib/Plotly Charts, etc) from the Python code automatically.

Frames

The other placeholder that you will be noticed is <frame>. The xlwings Reports use Frames to align dynamic tables vertically: xlwings Reports will automatically insert rows for as long as your table is and apply the same styling as defined in your template - you save hours of manual reformatting. Please see the example below:

Image from xlwings Reporting page.

Excel Table

Let take a closer look in the Daily Price Sheet, the {{ intel_price_df}} and {{ amd_price_df}} template variables are in the Excel Table.

Using Excel tables is the recommended way to format tables as the styling (themes and alternating colors) can be applied dynamically across columns and rows. You can create Excel Table by go to Insert > Table menus and make sure that you activate My table has headers before clicking on OK. Then add the placeholder as usual on the top-left in your template.

Note:

  • For Excel table support, you need at least xlwings version 0.21.0.
  • This feature supports Pandas DataFrame objects only (As of November 2020)
  • When using Excel tables, DataFrame indices are excluded by default (xlwings version 0.21.0 to 0.21.2).
  • Since xlwings version 0.21.3, the index is now transferred to Excel by default. If you would like to exclude the DataFrame index, you would need to use df.set_index('column_name') instead of df.reset_index() to hide the index.

Multiple Sheets

The xlwings Reports also support multiple Excel Sheets. Business users just create new Sheets in a single Excel template file and place template variables, frame tags in those Sheets based on the business requirements. xlwings PRO automatically replaces associate data in all Sheets. Developers do not need to manually create and manipulate new Excel Sheet(s) anymore.

Let's demonstrate with Intel vs AMD Volume comparison Sheet template.

Shape Text

With newly released xlwings version 0.21.4, xlwings Report supports template text in Shapes objects like Boxes or Rectangles with the templates variable. Please see more detail on the Shape Text feature page.

Note: This article does not demonstrate the Shape Text feature.

Now the template file is ready, we can continue on the data preparation side of the Python Code.

Code Walkthrough

Intel vs AMD Data Preparation: Days Daily Pricing data with RDP Content Layers

The RDP Content layer refers to logical market data objects, largely representing financial items like level 1 market data prices and quotes, Order Books, News, Historical Pricing, Company Research data, and so on.

When comparing to the RDP Function Layer, the Content Layer provides much more flexible manners for developers:

  • Richer / fuller response e.g. metadata, sentiment scores - where available
  • Using Asynchronous or Event-Driven operating modes - in addition to Synchronous
  • Streaming Level 1 Market Price Data - as well as Snapshot requests

The Content layer can easily be used by both professional developers and financial coders. It provides great flexibility for familiar and commonly used financial data models.

Please find more detail regarding the Content Layer on RDP Libraries document page.

Import xlwings PRO and RDP Libraries

The application needs to import xlwingsxlwings.pro.reports, and refinitiv.dataplatform packages in order to interact with the xlwings Reports and RDP library.

    	
            

# import xlwings and RDP libraries

import xlwings as xw

from xlwings.pro.reports import create_report

import refinitiv.dataplatform as rdp

 

# import all required libraries for this notebook

import datetime

import configparser as cp

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib

import matplotlib.ticker as tick

import json

import datetime

import asyncio

Initiate and Getting Data from RDP Libraries

The RDP Libraries let the application consume data from the following platforms:

  • DesktopSession (Eikon/Refinitiv Workspace)
  • PlatformSession (RDP, Refinitiv Real-Time Optimized)
  • DeployedPlatformSession (deployed Refinitiv Real-Time/ADS)

This article only focuses on the PlatformSession. However, for other session types, the main logic is the same when it interacts with xlwings library.

    	
            

# Open RDP Platform Session

session = rdp.open_platform_session(

    <app_key>, 

    rdp.GrantPassword(

        username = <rdp_username>, 

        password = <rdp_password>

    )

)

session.get_open_state() # Result: <State.Open: 3>

Next, we define all the necessary variables for requesting data from RDP PlatformSession.

    	
            

# Define RICs

intel_ric = 'INTC.O'

amd_ric = 'AMD.O'

 

fields = ['BID','ASK','OPEN_PRC','HIGH_1','LOW_1','TRDPRC_1','BLKVOLUM']

count = 90

This article utilizes Python asyncio library to retrieve data RDP Content Layer's HistoricalPricing interface get_summaries_async() function asynchronously.

    	
            

# Run two requests processes concurrently.

tasks = asyncio.gather(

    rdp.HistoricalPricing.get_summaries_async(intel_ric, interval = rdp.Intervals.DAILY, fields = fields, count = count),

    rdp.HistoricalPricing.get_summaries_async(amd_ric, interval = rdp.Intervals.DAILY, fields = fields, count = count)    

)

 

asyncio.get_event_loop().run_until_complete(tasks)

 

# Assign requests results to intel_interday and amd_interday variables

intel_interday, amd_interday = tasks._result

Once the task (requests Daily data of Intel and AMD) is completed, get the response data in Pandas DataFrame object format via <response>.data.df statement.

    	
            

print("\nHistorical Pricing Summaries - Interday - Intel")

intel_df_pricing = intel_interday.data.df

display(intel_df_pricing)

 

# check AMD data

Now we have the raw Intel and AMD Daily Price data, we can close the RDP Session.

    	
            

rdp.close_session()

 

print(session.get_open_state()) #State.Closed

The next phase is restructuring data to make it easier to read and to plot the report graphs.

Restructure DataFrame

Please note that the restructure steps are identical to the part 1 notebook application. We start by naming the index column to "Date"

Next, we change all non-Date columns data type from String to Float, and change the DataFrame Date index to be a data column. This will let us plot a graph using Date as X-Axis.

    	
            

for column in intel_df_pricing:

    intel_df_pricing[column]=intel_df_pricing[column].astype(float)

 

for column in amd_df_pricing:

    amd_df_pricing[column]=amd_df_pricing[column].astype(float)

 

intel_df_pricing.reset_index(level=0, inplace=True)

amd_df_pricing.reset_index(level=0, inplace=True)

 

intel_df_pricing.head(5)

Finally, we sort data in ascending order.

    	
            

# Sort DataFrame by Date

intel_df_pricing.sort_values('Date',ascending=True,inplace=True)

amd_df_pricing.sort_values('Date',ascending=True,inplace=True)

Plotting Intel and AMD 90 Daily Pricing Charts

We use Matplotlib's Pyplot library to plot Intel and AMD Daily Pricing graphs. Each graph represents interday data for the last 90 days pricing information.

The source code also creates 2 Pyplot Figure objects (intel_figure and amd_figure for Intel and AMD charts). We will pass those chart figures object to the report file as pictures with xlwings Reports create_report function.

    	
            

# Plotting a Graph for Intel

 

columns = ['OPEN_PRC','HIGH_1','LOW_1','TRDPRC_1']

 

intel_df_pricing.set_index('Date',drop=True,inplace=True)

intel_figure = plt.figure()

 

plt.xlabel('Date', fontsize='large')

plt.ylabel('Price', fontsize='large')



# Create graph title from Company and RIC names dynamically.

plt.ticklabel_format(style = 'plain')

plt.title('Intel interday data for last 90 days', color='black',fontsize='x-large')

ax = intel_figure.gca()

 

intel_df_pricing.plot(kind='line', ax = intel_figure.gca(),y=columns,figsize=(14,7) , grid = True)

plt.show()

    	
            

# Plotting a Graph for AMD

 

columns = ['OPEN_PRC','HIGH_1','LOW_1','TRDPRC_1']

 

amd_df_pricing.set_index('Date',drop=True,inplace=True)

amd_figure = plt.figure()

 

plt.xlabel('Date', fontsize='large')

plt.ylabel('Price', fontsize='large')



# Create graph title from Company and RIC names dynamically.

plt.ticklabel_format(style = 'plain')

plt.title('AMD interday data for last 90 days', color='black',fontsize='x-large')

ax = amd_figure.gca()

 

amd_df_pricing.plot(kind='line', ax = amd_figure.gca(),y=columns,figsize=(14,7), grid = True )

plt.show()

Now we got the charts and figure objects ready for the Pricing Sheet report. Next, we will create the Volume comparison chart for the Intel vs AMD Volume comparison Sheet.

Plotting Intel vs AMD Volume Comparison Chart

The next chart is block trading volume comparison which is the BLKVOLUM data field. This chart contains Intel and AMD data in the same figure.

    	
            

columns = ['BLKVOLUM']

 

# Intel

intel_amd_volume_figure = plt.figure()

 

plt.xlabel('Date', fontsize='large')

plt.ylabel('Trading Volume', fontsize='large')

 

# Create graph title from Company and RIC names dynamically.

plt.ticklabel_format(style = 'plain')

plt.title('AMD vs Intel total block trading volume comparison for last 90 days', color='black',fontsize='x-large')

ax = intel_amd_volume_figure.gca()

 

intel_df_pricing.plot(kind='line', ax = intel_amd_volume_figure.gca(),y=columns,figsize=(14,7) , label=['Intel trading volume'],grid = True)

 

# AMD

amd_df_pricing.plot(kind='line', ax = ax ,y=columns,figsize=(14,7), label=['AMD trading volume'],grid = True)

 

plt.show()

Now all data (DataFrame and Charts) is ready. We have demonstrated the Reports-API and with Reports API create_report() function in the part-1 article as the following example.

    	
            

wb = create_report(

    'rdp_report_template.xlsx', 

    'rdp_report_pro.xlsx', 

    historical_title=historical_title, 

    df_historical=df_historical.head(10), 

    graph= fig

)

The above code is ok for small data. This part-2 notebook will show more features that developers can work with the create_report() function for supporting various requirements and template variables.

Firstly, let's define static texts and template/report file location.

    	
            

# Define Static texts and template/report file location.

intel_price_title='Intel Hitorical Data'

amd_price_title = 'AMD Historical Data'

 

template_file = 'part2_rdp_report_template.xlsx' 

report_file = 'part2_rdp_intel_vs_amd.xlsx' 

Next, we create the Python Dictionary object to collect all data for template variables. Please note that the Dictionary keys must have the same names as template variables.

xlwings versions 0.21.0 to 0.21.2

When using Excel tables, DataFrame indices are excluded by default. We would like to include them in the report, so we reset the index before providing the DataFrame to the create_report function with df.reset_index() function.

xlwings version 0.21.3

Since xlwings version 0.21.3, the index is now transferred to Excel by default. If you would like to exclude the DataFrame index, you would need to use df.set_index('column_name') instead of df.reset_index() to hide the index.

This notebook application is based on xlwings version 0.21.3.

    	
            

# Create a Dictionary to collect all report data

data = dict(

    intel_price_title=intel_price_title,

    intel_price_df = intel_df_pricing.head(15),

    intel_graph = intel_figure,

    amd_price_title = amd_price_title,

    amd_price_df = amd_df_pricing.head(15),

    amd_graph = amd_figure,

    intel_amd_volume_graph = intel_amd_volume_figure,

)

Then we call the create_report function.

    	
            

wb = create_report(

    template_file, 

    report_file, 

    **data

)

The above create_report() function generates part2_rdp_intel_vs_amd.xlsx Excel report file with format/style defined in part2_rdp_report_template.xlsx and data that we pass to the function. With the default parameter, the part2_rdp_intel_vs_amd.xlsx file will be open automatically.

Developers can control the Excel instance by passing in an xlwings App instance. For example, to run the report in a separate and hidden instance of Excel. This is a useful feature if Developers aim to create an application that runs as a background service to generate reports daily, monthly, or weekly based on the business requirements.

    	
            

app = xw.App(visible=False)

 

wb = create_report(

    template_file, 

    'part_2_daily_report.xlsx', 

    app = app,

    **data

)

app.quit()  # Close the wb and quit the Excel instance

Now the part_2_daily_report.xlsx Excel report file is created in the background.

Exporting Excel report to PDF

With newly release xlwings version 0.21.1 onward, the xlwings CE can export the whole Excel workbook or a subset of the sheets to a PDF file with xlwings Book.to_pdf() function. Please see more detail regarding the to_pdf function on xlwings API reference page.

We will demonstrate this feature with a quick Python source code from the part-1 article to create the Intel Daily Pricing report in PDF file format.

Let's start by creating a new blank Excel report file and set a basic Report style.

    	
            

wb = xw.Book() # Creating an new excel file. wb = xw.Book(filename) would open an existing file

 

intel_price_sheet = wb.sheets[0]

intel_price_sheet.name = 'Intel Pricing'

intel_price_sheet.range("A1").value = 'Intel Pricing'

intel_price_sheet.range("A1").api.Font.Size = 14 # Change font size

intel_price_sheet.range("A1").api.Font.ColorIndex = 2 # Change font color

intel_price_sheet.range('A1:H1').color = (0,0,255) # Change cell background color

 

# Set Pandas DataFrame object to newly created Excel File

intel_price_sheet.range("A2").value = intel_df_pricing.head(15)

 

# Set data table format

 

intel_price_sheet.range('2:1').api.Font.Bold = True #Make Column headers bold

intel_price_sheet.range('A2:H2').color = (144,238,144)  # Change cell background color

intel_price_sheet.autofit('c') # Set sheet autofit the width of column

Next, find the position of the last row of the report table as a position to plot a graph (intel_figure).

    	
            

# historical_sheet.cells.last_cell.row = row of the lower right cell

 

'''

change to your specified column, then go up until you hit a non-empty cell

'''

intel_price_last_row = intel_price_sheet.range((intel_price_sheet.cells.last_cell.row, 1)).end('up').row  

 

rng = intel_price_sheet.range('A{row}'.format(row = intel_price_last_row + 1))

 

# Resize inte_figure Figure object

intel_figure.set_figheight(6)

intel_figure.set_figwidth(6)

 

# Add figure to Excel report file as a picture

intel_price_sheet.pictures.add(intel_figure, name='MyPlot', update=True, top=rng.top, left=rng.left)

Then call the Book.to_pdf() function to save this Excel report as PDF file.

    	
            wb.to_pdf('./part_2_xlwings_to_pdf.pdf') # defaults to the same name as the workbook, in the same directory
        
        
    

The Excel report with RDP content will be saved as part_2_xlwings_to_pdf.pdf file.

Embedded Code

The xlwings Embedded Code is part of xlwings PRO. It allows developers to store the Python code directly in Excel so developers don’t have to distribute separate Python files. This feature lets business users can consume RDP content with the macro-enabled Excel file (xlsm file) directly without any Python file required (the Python or AnacondaMiniConda is still required).

Developers can implement the Python application to consume RDP data, then run xlwings xlwings code embed command in the console to import all Python files from the current directory and paste them into sheets with the same name of the currently active Excel workbook.

The Python console application is more suitable to demonstrate this Embedded Code feature than via the Jupyter notebook. This article will demonstrate this feature with by showing how to consume bond analytics data from the macro-enabled Excel file via RDP Libraries Financial Contracts API (rdp.get_bond_analytics() function). The examples file are available in python_embedded folder of the xlwings RDP project.

RDP - IPA Bond Example Code

Firstly, we create the Python application source code named rdp_ipa_bond.py. The code import xlwingsrefinitiv.dataplatformrefinitiv.dataplatform.content, and refinitiv.dataplatform.content.ipa packages in order to interact with the xlwings Reports and RDP library.

    	
            

import xlwings as xw

import configparser as cp

import refinitiv.dataplatform as rdp

 

from refinitiv.dataplatform.content import ipa

from refinitiv.dataplatform.content.ipa import bond

 

session = None

wb = None

Next, the code read user RDP credentials from rdp.cfg configuration file and open the PlatformSession. The cfg file must be specify in an absolute path to the file, otherwise Excel file cannot read it.

    	
            

# Open RDP Platform Session

def init_session():

    cfg = cp.ConfigParser()

    """

    The cfg file must be specify in absolute path to the file, otherwise Excel file cannot read it.

    """

    cfg_location = 'C:\\drive_d\\Project\\Code\\xlwings_project\\notebook' + '\\rdp.cfg' # Change it to match your machine folder.

    cfg.read(cfg_location) 

    session = rdp.open_platform_session(

        cfg['rdp']['app_key'], 

        rdp.GrantPassword(

            username = cfg['rdp']['username'], 

            password = cfg['rdp']['password']

        )

    )

    #print(session.get_open_state())

    return session

The RDP get_bond_analytics function computes bond analytics (yield, sensitivities, spreads) based on the latest available market data or using end of day data.

The list of available fields can be found on the RDP APIs document page.

    	
            

def request_ipa_bond(universe, fields):

    response = None

    try:

        response = rdp.get_bond_analytics(

            universe = universe,

            calculation_params = bond.CalculationParams(

                market_data_date="2020-07-05",

                price_side = ipa.enum_types.PriceSide.BID

            ),

            fields = fields

        )

    except Exception as exp:

        print('RDP Libraries: Function Layer exception: %s' % str(exp))

    

    return response

The most important thing is the main python application must have a method named "main" as a main point to run application by the macro-enabled Excel file. We create the main() method that retrieves IPA Bond data and exports data to Excel Sheet with with xlwings library.

    	
            

def main():

    wb = xw.Book.caller()

    ipa_sheet = wb.sheets[0]

    ipa_sheet.name = 'IPA Bond Sheet'

    session = init_session()

    universe = ["US3MT=RR","US6MT=RR","US1YT=RR", "US2YT=RR", "US3YT=RR", "US5YT=RR", "US7YT=RR", "US10YT=RR"]

    fields = ['InstrumentDescription','MarketDataDate','Price','YieldPercent','ZSpreadBp']

    df_response = request_ipa_bond(universe, fields)

    if df_response is not None:

        df_response.insert(0, 'Item', universe, True)

        df_response.set_index('Item', inplace = True)

        #print(df_response)

        ipa_sheet['A8'].value = df_response

    

    close_session(session)

Enable xlwings VBA add-in/Run Main for Excel

Next, please follow the following required steps to set up xlwings add-in and Run Main feature.

  1. xlwings add-in setting.
  2. xlwings Run Main setting.

Please make sure that you are setting the correct Python/Conda environment information in xlwings Run Main - User Settings page.

Creating IPA Data Excel Report File

The other important requirement is the python application and Excel files name must be identical (example: rdp_ipa_bond.py and rdp_ipa_bond.xlsm). Once you have setup xlwings Add-in: Run main feature; Create an macro-enabled Excel file (.xlsm extension) named rdp_ipa_bond.xlsm with the following template.

While the Excel report remains open, open a command prompt to python_embedded folder and run xlwings code embed command to load rdp_ipa_bond.py source code to the Excel file. If success, the console will show xlwings version message as the following example:

The Python source code will be added as a new Excel Sheet.

Running Python in IPA Data Report

You can run the embedded Python Sheet by go to the xlwings toolbar and click the Run Main button to get IPA Data and display it in Excel Sheet.

Alternatively, you can replace xlwings Add-in with a VBA module which lets you run embedded Python code from VBA function RunPython ("import mymodule;mymodule.myfunction()") without to install the add-in. Please see more detail in xlwings add-in: quickstart command example page.

Conclusion and Next Step

The xlwings CE library lets Python developers integrate data with Excel in a simple way. The xlwings PRO allows Python developers and business users to work together to integrate data with Excel or PDF report file in much easier than xlwings CE.

The xlwings Reports help businesses and financial teams design the report to match their business requirement freely. The Python developers/data engineers can focus on how to retrieve and optimize data without no need to worry about report design, look & feel. xlwings Reports also help developers can automate report generator process periodicity (such as a daily, weekly, or monthly report).

If users want dynamic data and charts in the report file, the xlwings Embedded Code feature lets users run Python code in the macro-enabled Excel report directly. Users do not need to run a separate Python code themselves or wait for Developers to generate a report file for them.

The newly introduced to_pdf feature also lets developers export the Excel Workbook/Sheets to the PDF file. This function helps business users who do not have Microsoft Office installed can still be able to open the PDF report file.

At the same time, the Refinitiv Data Platform (RDP) Libraries let developers rapidly access Refinitiv Platform content with a few lines of code that easy to understand and maintain. Developers can focus on implement the business logic or analysis data without worry about the connection, authentication detail with the Refinitiv Platforms.

The integration between Refinitiv APIs and xlwings is not limited to only RDP Libraries. Any Refinitiv APIs that support Python programming language such as Eikon Data API (Eikon Data API-xlwings article), or RKD API, or DataStream Web Service - Python can work with xlwings library using the same concept and code logic as this RDP Libraries notebook examples.